MATH2050B 1920 HW2

TA's solutions to selected problems

Before any solution, let us first show the following fact (which is also a part of $Q2$):

Fact: $0 \cdot a = 0$ for any real number a.

Proof. Let a be a real number. Note

$$
0 + 0 \cdot a = 0 \cdot a \tag{A3}
$$

$$
= (0+0) \cdot a \tag{A3}
$$

$$
= 0 \cdot a + 0 \cdot a \tag{D}
$$

By the cancellation law, $0 \cdot a = 0$.

Q1: Show that $(-1) \cdot a = -a$ for any real number a.

Solution: Let a be a real number. It needs to check that $(-1) \cdot a$ is the additive inverse of a, i.e. $(-1) \cdot a + a = 0$. Note

$$
(-1) \cdot a + a = (-1) \cdot a + 1 \cdot a \tag{M3}
$$

$$
= ((-1) + 1) \cdot a \tag{D}
$$

$$
= (0) \cdot a \tag{A4}
$$

$$
= a \tag{Fact}
$$

Q2: Show that $0 \cdot a = 0$ for any real number a and that $-(-a) = a$ for any real number a. Show that $(-1)^2 = 1$ and $(-a)^2 = [(-1)a]^2 = ([-1]^2)(a^2) = a^2$ for any real number a.

Solution: Let a be a real number. $0 \cdot a = 0$ is the fact shown.

• To show $-(-a) = a$, it needs to show $-(-a) + (-a) = 0$. Note

$$
-(-a) + (-a) = (-1) \cdot (-a) + (-a)
$$
 (Q1)

$$
= (-1) \cdot (-a) + 1 \cdot (-a) \tag{M3}
$$

$$
= ((-1) + 1) \cdot (-a) \tag{D}
$$

$$
= (0) \cdot (-a) \tag{A4}
$$

$$
= 0
$$
 (Fact)

• To show $(-1)^2 = 1$, note $(-1)^2 = (-1)(-1)$ by definition. By Q1, $(-1)(-1) = -(-1)$. Then apply the above ($-(-a) = a$ for any real a) to $a = 1$, one gets $-(-1) = 1$. Hence $(-1)^2 = 1.$

 \Box

• To show $(-a)^2 = \frac{(-1)a^2}{(-1)^2(a^2)} = a^2$, note:

$$
(-a)^2 = ([-1] \cdot a)^2
$$
\n
$$
(Q1)
$$
\n
$$
(L_1 \cdot a) \cdot (L_2 \cdot a) \cdot (L_3 \cdot a) \cdot (L_4 \cdot a) \cdot (L_5 \cdot a)
$$

$$
= ([-1] \cdot a) \cdot ([-1] \cdot a) \tag{Def.}
$$

- $= ([-1])(a \cdot ([-1] \cdot a))$ (M2) $= ([-1]) \cdot (([-1] \cdot a) \cdot a)$ (M1)
- $= ([-1]) \cdot ([-1] \cdot (a \cdot a))$ (M2)

$$
= (-1) \cdot ([-1] \cdot a^2) \qquad (\text{Def.})
$$

$$
= ([-1] \cdot [-1]) \cdot a^2 \tag{M2}
$$

$$
= 1 \cdot a^2 \tag{ (-1)^2 = 1 }
$$

$$
=a^2 \tag{M3}
$$

Q3: Show that $a^2 \geq 0$ for any real number a.

Solution: Let a be a real number. Let \mathbb{P} be the set of all positive real numbers(i.e. the set of real numbers x for which $x > 0$. Then exactly one of the following three cases holds:

= a

- (i) $a \in \mathbb{P}$.
- (ii) $-a \in \mathbb{P}$.
- (iii) $a=0$.

For case (i), since $\mathbb P$ has the property that for any two $x, y \in \mathbb P$, xy is still in $\mathbb P$. Therefore $a^2 = a \cdot a \in \mathbb{P}$. For case (ii), one has from **Q2** that $a^2 = (-a)^2 \in \mathbb{P}$. For case (iii), by the fact one has $a^2 = 0^2 = 0$. In any case, one has either $a^2 > 0$ or $a^2 = 0$. Hence $a^2 \ge 0$ always holds.

Q4: Let r be a real number and A be a bounded above, nonempty set of real numbers. Define the meaning that $r := \sup A$, the smallest (=the least) upper bound of A and complete the following sentences:

- (i) If $t < r$ then $t < \ldots$, for in A.
- (ii) If $t \geq r$ then t is bigger than or equal to, for in A.

Solution:

- (i) If $t < r$ then $t < a$, for some a in A.
- (ii) If $t > r$ then t is bigger than or equal to a, for all a in A.

Q5: Let A be as in Q4 and let $-A := \{-a : a \in A\}$. Show that $-A$ is bounded below and $\inf -A = -\sup A$.

Solution: Since A is bounded above, the supremum of A, $r = \sup A$, exists in R. To show $-A$ is bounded below, let $x \in -A$, then there is some $a \in A$ such that $x = -a$. Since $a \in A$, so $a \leq r$. So $x = -a \geq -r$. This shows that $-r$ is a lower bound for $-A$.

It remains to show inf $-A = -r$. Let y be a lower bound of $-A$, then by a similar argument as in above(HOW?), $-y$ is an upper bound of A. Since r is the supremum of A, therefore $r \leq -y$. So $-r \geq -(-y) = y$. This shows that $-r$ is the largest lower bound of $-A$. Hence $-r = \inf -A$.

Q6(i): Let A, B be bounded above, nonempty subsets of real numbers and $A + B = \{a + b :$ $a \in A, b \in B$. Show that $A + B$ is also bounded above and $\sup(A + B) = \sup A + \sup B$ but the equality

$$
\sup\{f(x) + g(x) : x \in D\} = \sup\{f(x) : x \in D\} + \sup\{g(x) : x \in D\}
$$

may fail, where D is a subset of R and f, g are real-valued functions on D such that $\{f(x) : x \in$ D} and $\{g(x): x \in D\}$ are bounded above.

Solution: It is immediate to check that every element in $A + B$ is bounded above by sup $A +$ sup B: if $x \in A + B$, write $x = a + b$ for some $a \in A, b \in B$, then $x = a + b \le \sup A + \sup B$.

Therefore $\sup A + \sup B$ is an upper bound of $A + B$, and so $\sup(A + B) \leq \sup A + \sup B$. It needs to show $\sup(A + B) > \sup A + \sup B$.

Let $r = \sup(A + B)$. Fix an arbitrary element $b \in B$, then $r \ge a + b$ for all $a \in A$. So $r \ge \sup(A + b)$, where $A + b = \{a + b : a \in A\}.$

Since $\sup(A + b) = (\sup A) + b$ (WHY?), so $r \geq (\sup A) + b$, for any $b \in B$. Taking supremum over all $b \in B$, one has $r \geq (\sup A) + (\sup B)$. Hence $\sup(A + B) = \sup A + \sup B$.

The equality

$$
\sup\{f(x) + g(x) : x \in D\} = \sup\{f(x) : x \in D\} + \sup\{g(x) : x \in D\}
$$

does not hold in general (however " \leq " always holds). Take $D = \mathbb{R}, f, g : \mathbb{R} \to \mathbb{R}$ to be

$$
f = \begin{cases} 0, & \text{if } x > 0 \\ 1, & \text{if } x \le 0 \end{cases}, \quad g = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x \le 0 \end{cases}
$$

(Please check that the equality does not hold)

Q6(ii): Do the corresponding question for inf in place of sup.

Solution: If A, B are bounded below, then $-A$, $-B$ are bounded above. Since $-A + (-B) =$ $-(A + B)$, therefore by part (i) ,

$$
\sup(-A) + \sup(-B) = \sup(-(A+B)).
$$

By $Q5$,

$$
\inf A + \inf B = \inf (A + B).
$$

Again, the equality

$$
\inf\{f(x) + g(x) : x \in D\} = \inf\{f(x) : x \in D\} + \inf\{g(x) : x \in D\}
$$

does not hold in general (however " \geq " always holds). The same functions f, g defined above still work.