MATH2050B 1920 HW2

TA's solutions to selected problems

Before any solution, let us first show the following fact(which is also a part of $\mathbf{Q2}$):

Fact: $0 \cdot a = 0$ for any real number a.

Proof. Let a be a real number. Note

$$0 + 0 \cdot a = 0 \cdot a \tag{A3}$$

$$= (0+0) \cdot a \tag{A3}$$

$$= 0 \cdot a + 0 \cdot a \tag{D}$$

By the cancellation law, $0 \cdot a = 0$.

Q1: Show that $(-1) \cdot a = -a$ for any real number a.

Solution: Let a be a real number. It needs to check that $(-1) \cdot a$ is the additive inverse of a, i.e. $(-1) \cdot a + a = 0$. Note

$$(-1) \cdot a + a = (-1) \cdot a + 1 \cdot a \tag{M3}$$

$$= ((-1)+1) \cdot a \tag{D}$$

$$= (0) \cdot a \tag{A4}$$

$$=a$$
 (Fact)

Q2: Show that $0 \cdot a = 0$ for any real number a and that -(-a) = a for any real number a. Show that $(-1)^2 = 1$ and $(-a)^2 = [(-1)a]^2 = ([-1]^2)(a^2) = a^2$ for any real number a.

Solution: Let *a* be a real number. $0 \cdot a = 0$ is the fact shown.

• To show -(-a) = a, it needs to show -(-a) + (-a) = 0. Note

$$-(-a) + (-a) = (-1) \cdot (-a) + (-a)$$
(Q1)

$$= (-1) \cdot (-a) + 1 \cdot (-a)$$
 (M3)

$$= ((-1) + 1) \cdot (-a)$$
 (D)

$$= (0) \cdot (-a) \tag{A4}$$

$$=0$$
 (Fact)

• To show $(-1)^2 = 1$, note $(-1)^2 = (-1)(-1)$ by definition. By **Q1**, (-1)(-1) = -(-1). Then apply the above (-(-a) = a for any real a) to a = 1, one gets -(-1) = 1. Hence $(-1)^2 = 1$.

• To show $(-a)^2 = [(-1)a]^2 = ([-1]^2)(a^2) = a^2$, note:

$$(-a)^2 = ([-1] \cdot a)^2$$
 (Q1)
= ([-1] - a) - ([-1] - a) (Def)

$$= ([-1] \cdot a) \cdot ([-1] \cdot a)$$
 (Def.)

 $= ([-1])(a \cdot ([-1] \cdot a))$ (M2) = ([-1]) \cdot (([-1] \cdot a) \cdot a) (M1)

$$= ([-1]) \cdot (([-1] \cdot a) \cdot a)$$
(M1)
$$= ([-1]) \cdot ([-1] \cdot (a \cdot a))$$
(M2)

 $= (-1) \cdot ([-1] \cdot a^2)$ (Def.)

$$= ([-1] \cdot [-1]) \cdot a^2 \tag{M2}$$

$$= 1 \cdot a^2$$
 ((-1)² = 1)

$$a^2$$
 (M3)

Q3: Show that $a^2 \ge 0$ for any real number a.

Solution: Let a be a real number. Let \mathbb{P} be the set of all positive real numbers (i.e. the set of real numbers x for which x > 0). Then exactly one of the following three cases holds:

_

- (i) $a \in \mathbb{P}$.
- (ii) $-a \in \mathbb{P}$.
- (iii) a = 0.

For case (i), since \mathbb{P} has the property that for any two $x, y \in \mathbb{P}$, xy is still in \mathbb{P} . Therefore $a^2 = a \cdot a \in \mathbb{P}$. For case (ii), one has from **Q2** that $a^2 = (-a)^2 \in \mathbb{P}$. For case (iii), by the fact one has $a^2 = 0^2 = 0$. In any case, one has either $a^2 > 0$ or $a^2 = 0$. Hence $a^2 \ge 0$ always holds.

Q4: Let r be a real number and A be a bounded above, nonempty set of real numbers. Define the meaning that $r := \sup A$, the smallest (=the least) upper bound of A and complete the following sentences:

- (i) If t < r then $t < \dots$, for \dots in A.
- (ii) If $t \ge r$ then t is bigger than or equal to, for in A.

Solution:

- (i) If t < r then t < a, for some a in A.
- (ii) If $t \ge r$ then t is bigger than or equal to a, for all a in A.

Q5: Let A be as in **Q4** and let $-A := \{-a : a \in A\}$. Show that -A is bounded below and $\inf -A = -\sup A$.

Solution: Since A is bounded above, the supremum of A, $r = \sup A$, exists in \mathbb{R} . To show -A is bounded below, let $x \in -A$, then there is some $a \in A$ such that x = -a. Since $a \in A$, so $a \leq r$. So $x = -a \geq -r$. This shows that -r is a lower bound for -A.

It remains to show $\inf -A = -r$. Let y be a lower bound of -A, then by a similar argument as in above(**HOW**?), -y is an upper bound of A. Since r is the supremum of A, therefore

 $r \leq -y$. So $-r \geq -(-y) = y$. This shows that -r is the largest lower bound of -A. Hence $-r = \inf -A$.

Q6(i): Let A, B be bounded above, nonempty subsets of real numbers and $A + B = \{a + b : a \in A, b \in B\}$. Show that A + B is also bounded above and $\sup(A + B) = \sup A + \sup B$ but the equality

$$\sup\{f(x) + g(x) : x \in D\} = \sup\{f(x) : x \in D\} + \sup\{g(x) : x \in D\}$$

may fail, where D is a subset of \mathbb{R} and f, g are real-valued functions on D such that $\{f(x) : x \in D\}$ and $\{g(x) : x \in D\}$ are bounded above.

Solution: It is immediate to check that every element in A + B is bounded above by $\sup A + \sup B$: if $x \in A + B$, write x = a + b for some $a \in A, b \in B$, then $x = a + b \leq \sup A + \sup B$.

Therefore $\sup A + \sup B$ is an upper bound of A + B, and so $\sup(A + B) \leq \sup A + \sup B$. It needs to show $\sup(A + B) \geq \sup A + \sup B$.

Let $r = \sup(A + B)$. Fix an arbitrary element $b \in B$, then $r \ge a + b$ for all $a \in A$. So $r \ge \sup(A + b)$, where $A + b = \{a + b : a \in A\}$.

Since $\sup(A + b) = (\sup A) + b$ (**WHY?**), so $r \ge (\sup A) + b$, for any $b \in B$. Taking supremum over all $b \in B$, one has $r \ge (\sup A) + (\sup B)$. Hence $\sup(A + B) = \sup A + \sup B$.

The equality

$$\sup\{f(x) + g(x) : x \in D\} = \sup\{f(x) : x \in D\} + \sup\{g(x) : x \in D\}$$

does not hold in general (however " \leq " always holds). Take $D = \mathbb{R}, f, g : \mathbb{R} \to \mathbb{R}$ to be

$$f = \begin{cases} 0 & \text{, if } x > 0 \\ 1 & \text{, if } x \le 0 \end{cases}, \quad g = \begin{cases} 1 & \text{, if } x > 0 \\ 0 & \text{, if } x \le 0 \end{cases}$$

(Please check that the equality does not hold)

Q6(ii): Do the corresponding question for inf in place of sup.

Solution: If A, B are bounded below, then -A, -B are bounded above. Since -A + (-B) = -(A + B), therefore by part (i),

$$\sup(-A) + \sup(-B) = \sup(-(A+B)).$$

By **Q5**,

$$\inf A + \inf B = \inf(A + B).$$

Again, the equality

$$\inf\{f(x) + g(x) : x \in D\} = \inf\{f(x) : x \in D\} + \inf\{g(x) : x \in D\}$$

does not hold in general (however " \geq " always holds). The same functions f,g defined above still work.